撲克組合數學謎題
- Tombos21
- 6月30日
- 讀畢需時 2 分鐘
今天我們為您準備了一個特別的謎題,這個謎題將測試您作為撲克玩家的直覺,並挑戰您對組合數學(combinatorics)的理解。
六名玩家在翻牌前以範圍(QQ+, AK)全下(all-in)。

問題:
QQ能否贏得底池?如果可以,如何贏得?
KK能否贏得底池?如果可以,如何贏得?
在這個場景中,您寧願持有QQ、KK還是AKo?
一位觀眾下了一個旁注(side bet)。如果翻牌後的牌面上出現任何A、K或Q,他們就贏得旁注。他們贏得旁注的機率是多少?
請注意,您不需要使用權益計算器(equity calculator)或任何特殊軟件來回答這些問題。
答案:
正確答案
回答這些問題的關鍵在於思考:六名不同玩家如何能同時持有範圍(QQ+, AK)。考慮到卡牌移除(card removal)的影響,可能的情況非常有限。
整副牌中只有12張牌是Q、K或A。六名玩家每人持有兩張牌,將用盡牌庫中的所有Q、K和A。
現在讓我們來探討六名玩家持有這些範圍的可能性有多少種。總共只有三種可能的情況:

QQ能否贏得底池?如果可以,如何贏得?
可以,但僅限於QQ組成同花順(straight flush)的情況!在所有場景中,必然有兩名玩家持有QQ。所有的A和K都在遊戲中,因此用普通同花(flush)贏是不可能的。所有的Q也在遊戲中,因此無法超越更大的對子(outdraw better pairs)。
KK能否贏得底池?如果可以,如何贏得?
不,KK無法贏得底池。KK總是試圖超越AA。要做到這一點,KK必須組成順子(straight)、同花(flush)或使用第三張K。所有的K都在遊戲中,因此無法使用第三張K。所有的Q也在遊戲中,因此順子不可能。所有的A也在遊戲中,因此無法用同花獲勝。因此,KK無法贏得底池。
在這個場景中,您寧願持有QQ、KK還是AKo?
QQ的權益(equity)明顯高於其他手牌。贏得底池不是唯一的方式,您還可以通過平分底池(chop)獲利。三分之一的時間,QQ會遇到第一種場景,即對抗另一個QQ和四名持有AK的玩家。這對QQ非常有利,因為AK之間會互相阻礙彼此的成牌機會(outs)。
KK唯一平分底池的機會是六名玩家通過牌面上的順子共同平分底池。
AK總是對抗一個或三個其他AK。它可以通過A的同花獲勝,也可以通過輪形順子(wheel straight)平分底池。然而,這些事件的發生概率遠低於QQ三分之一的機會遇到第一種場景。
如果我們進行簡單的權益計算(equity calculation),我們會發現QQ的權益明顯高於KK或AKo。然而,這主要來自於QQ在超過20%的情況下與另一個QQ平分底池。

一位觀眾下了一個旁注(side bet)。如果翻牌後的牌面上出現任何A、K或Q,他們就贏得旁注。他們贏得旁注的機率是多少?
機率為零,因為所有的A、K和Q都必須被六名玩家持有。
Comments